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Quantum tunnelling, non-trapping and the existence of Stark 
ladder resonances 

J M Combest and P D Hislop?$§ 
Centre de Physique Thiorique, CNRS, Luminy Case 907, 13288 Marseille Cedex 9, France 

Received 12 September 1989, in final form 6 November 1989 

Abstract. We announce results which establish the existence of Stark-Wannier resonances 
in one-dimension in the semiclassical regime of small Planck's constant. We also obtain 
estimates on the width of these resonances, including dependence of the width on the 
electric field in certain cases. We discuss the proofs of these results which utilise many 
recently developed ideas concerning resonances in quantum mechanics. 

Quantum tunnelling has been much discussed in the theoretical physics [ 1-31 and 
mathematical physics [4-61 literature. Such ideas apply to the study of stationary 
states of quantum Hamiltonians H ( h )  = h 2 p 2 +  V, p = -iV, in the semiclassical regime 
of small h, when V is a potential having multiple minima separated by barriers of 
finite height and V becomes infinite as 1x1 + 00. Tunnelling also plays a role in the 
study of quasistationary states of Hamiltonians (see figure 1). There now exist many 
results on the existence of resonances for two- and many-body Hamiltonians in the 
generalised semiclassical regime. These Hamiltonians include those describing shape 
resonances [7-91, the DC and AC Stark effect for two- and many-body systems [lo-131, 
and the Zeeman effect [8]. The purpose of this paper is twofold. First, we announce 
results establishing the existence of Stark ladder resonances in one dimension and 
estimates on the width of the resonances, including a proof of an Oppenheimer-type 
formula. The details will be published elsewhere [14]. Secondly, we use this model 
to explain the key ideas concerning the results on quantum resonances mentioned 
above. The problem of Stark ladder resonances has attracted considerable debate in 
the physics literature [15-171 and the solution of this problem (at least in the semi- 
classical regime) involves all of the characteristic ideas recently developed about 
quantum resonances: spectral deformation, geometric perturbation theory and 
exponential decay estimates of eigenfunctions. 

The notion of a resonance for a quantum system is based on phenomenology but 
is difficult to formulate mathematically within the usual framework of quantum 
mechanics. We use a definition which originated in the work of Aguilar, Balslev and 
Combes [18, 191. Let H be the self-adjoint Hamiltonian for the system on a Hilbert 
space X. Our definition involves the resolvent or Green function R ( z )  of H and a 
unitary group U( e) ,  0 ER. The resolvent R ( z )  = ( z  - If)-' is defined and analytic in 
z on C\u(H) ,  where u ( H )  is the spectrum of H (the discrete states and continuous 
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Figure 1. Tunnelling phenomena: ( a )  stationary tunnelling leads to the splitting of eigen- 
values; ( b )  dynamic tunnelling leads to resonances. 

spectrum). The group U(0) must be a spectral deformation group for H ;  that is, the 
conjugated operator H( e )  = U( e)  HU( e ) - ' ,  8 E R, must admit an analytic continuation 
in 0 to a complex neighbourhood of R. The original choice for U( 0 )  was the dilation 
group on R" : x-, cyo(x) = e'x and for f~ L * ( R " ) :  

(U( e If) (x  1 = J ,  ( x ) "?f( cy, ( x  ) 

= e-'" 'f(eHx) (1) 
where .Jo is the Jacobian of the map c y o .  One can check the formula for @ E R :  

(2) 
so that if the potential V is relatively p*-compact and is the restriction to R of an 
analytic function V ( z )  for IIm zI < 6/Re z/, then H ( 0 )  has an analytic continuation 
into this region Y in general. The group U(6)  has an associated family of analytic 
vectors d, in 2. If U E d,, then 

H ( e )  = u(e)(h 'p?+ v ( x ) ) u ( ~ ) - '  =e-"h'p'+ ~ ( a , ( x ) )  

e€c+ u(e)u 
is an analytic function. This set d, is dense in 2. Given H and a spectral deformation 
group U(e) ,  we have definition 1. 

DeJinition 1 .  A resonance zo of a self-adjoint Hamiltonian H is a pole of the meromor- 
phic continuation of matrix elements (U, R ( z ) u ) ,  U, U E .d,- for a spectral deformation 
group U, from Im z > 0 through the continuous spectrum, to the lower half-complex 
plane. 
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Several comments are in order. The first refer to the mathematical nature of 
definition 1, and the second refer to the connection between definition 1 and the 
physical notions of resonance. Definition 1 is a mathematically sound definition 
because: 

( i )  a resonance z, depends only on H and sdu, not on the vectors U ,  U E d,; 
(ii) a resonance zo is an eigenvalue of the non-self-adjoint operator H ( 8 ) ,  8 E Y 

(iii) a resonance z ,  is locally independent of 8; 
(iv) a resonance zo is independent of the spectral deformation group in the following 

sense: let V( e), 8 E R, be another spectral deformation group for H such that fi( 8) = 
V( 8 ) H V (  e) - '  also has a continuation to Y and such that du n sd, is dense in 2. Then 
zo is also an eigenvalue of f i ( e ) .  

(v) The group nature of U( 8) is not necessary; in many cases it suffices that 8 + U( 6') 
for 181 small is a unitary family. 

A detailed discussion of these facts may be found in [20]. We emphasise that 
definition 1 is flexible in its implementation (as indicated in (iv)) and useful as it 
identifies resonances as eigenvalues (albeit of non-self-adjoint operators). This fact is 
used in both theoretical and numerical calculations. Definition 1 does not assert that 
a meromorphic continuation of ( U ,  R ( z ) v )  exists. Indeed, this requires more detailed 
information about the spectrum of H( 8 )  for 8 E C. As the name spectral deformation 
implies, in many cases one can prove that the essential spectrum of H is moved off 
the real axis and into the lower complex plane as 8 becomes complex for Im 8 > 0. 
In the example above (2), it is easy to check that the continuous spectrum of H ( 8 )  is 
the ray (see figure 2). This global information permits meromorphic continu- 
ation of ( U ,  R ( z ) u )  into the sector {zl-2Im 8 <arg z <O}. In many cases, we are only 
interested in a local continuation for z with Re z near some energy e,. The existence 
of a local meromorphic continuation into a complex neighbourhood of e ,  is then 
guaranteed by so-called non-trapping estimates [21-231. This is discussed in more 
detail below. 

With respect to physical interpretation, the resonances so obtained are associated 
with observable properties of the system. We mention two examples. For H = p 2 +  V 

(this implies (i)); 

" "  Y " " "  
n n n r r n n  

- 0  

Eigenvalues of H Continuws s w c t r u m  =[R* 

Resonances of H 

Eigenvalues o f  H (  e )  
= eigenvalues of H and resonances 

Figure 2. Spectrum of a deformed Hamiltonian 
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where V is short-range, Le, V(x) = O(\X\-~- ' ) ,  E > 0, and analytic in a neighbourhood 
of infinity, it is known that the resonances are poles in the meromorphic continuation 
of the 9'-matrix Y ( k )  for the system [24]. This is also true for the two-cluster to 
two-cluster 9'-matrix in the N-body case when V is the sum of two-body exponentially 
decaying potentials [ 2 5 ] .  Moreover, the existence of resonances for two-body 
Schrodinger operators with compactly supported V implies that there are states CC, of 
the system, well localised in energy and position, such that (I,yR eiHrJI(I decays exponen- 
tially like e-/'* for several lifetimes, where T is the width of the resonance and V is 
non-zero for 1x1 < R [ 2 6 ] .  (Strict exponential decay of e iHrJI  is prohibited if u ( H )  is 
contained in a half-line. In the Stark effect case, this is not true and there is pure 
exponential decay [27].) 

Finally, we mention another definition of resonance which has been introduced by 
Helffer and Sjostrand [8] and which gives results similar to those discussed above. 
(In fact, it is known that these are equivalent definitions when applied to the Schrodinger 
equation [28].) Given H ( h )  one studies ( H ( h )  - z ) ,  z E C,  not on the original Hilbert 
space 2, but as a transformation between certain Sobolev spaces which are associated 
with complex extensions of the classical phase space for the system. For an energy 
E,, the resonances of H ( h )  near Eo are defined to be the complex zo such that 
(H( h )  - zo)  is not invertible. 

We now turn to the Stark ladder problem. The Hamiltonian in one dimension with 
an external electric field F 3 0 is: 

(3) 

where p 2  = -d2/dx2 and U is a periodic potential satisfying: 
( v l )  v is a real, non-constant periodic function with period T,  and U is the restriction 

to R of a function u ( z )  analytic in a strip IIm zI < 77. Furthermore, we must place some 
restrictions on F relative to h :  

H( h, F )  = h2p2 + v + Fx 

(F l )  for some c > O ,  ch" < F < / l u ' I / , ,  where O S a < l .  
Of course, if F > 0 is a constant independent of h, then by taking h small enough 

this lower bound can always be satisfied. In some cases, F might be a function of h 
and in these cases, (F l )  gives a bound on the h-dependence of F for which our proof 
works. The upper bound in (F l )  guarantees that the total potential V ( x )  = Fx+ u ( x )  
has local maxima and minima which will trap the particle. The lower bound in (F l )  
ensures that the tunnelling phenomena is controlled by the width in the Agmon metric, 
defined in ( 6 )  below, of the potential barriers in the semiclassical regime of small h. 
Our first result is the following theorem. 

Theorem 1 (Existence). Let H ( h ,  F )  be as in (3) with ( v l )  and (Fl)  satisfied. Then 
3 h , >  0 such that h < h, implies that (1) H ( h ,  F )  has an infinite family of resonances 
zoj with 

Re z,, = +jFT j e Z  (4) 

IIm zoI s c e-p'h. 

and (2)  Im z , ,~  = Im zo. In addition, there exists c > 0 and /3 > 0 such that: 

The characteristic periodicity of z,,~ gives rise to the name Stark ladder resonances. 
The constant CO can be identified with the ground state e, of a particle confined to a 
unit cell of the periodic potential v up to an exponentially small correction. This gives 
the first ladder of resonances. It is expected that ladders of resonances exist for each 
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of the low-lying eigenvalues of the single-cell Hamiltonian. Other mathematical results 
concerning ( 3 )  include the existence of resonances for F sufficiently large [ 2 9 ]  and in 
the limit F+O [30], estimates on the evolution generated by H [31], and on the 
interband matrix elements [ 3 2 ] .  

In solid state physics, the existence of Stark- Wannier resonances can be argued as 
follows. Let B, = [ O , ~ T / T ]  be the Brillouin zone for 

d2 
dx2 

Ho = - h 2  - + U. 

Let ~ , ( k ) ,  k E B,, n EN, be the band energy function. Ho can be diagonalised in 
a basis of Bloch waves and we use this basis to write H = Ho+ Fx restricted to the nth 
band. The eigenfunctions Gn( k )  and eigenvalues E,, of this single-band Hamiltonian 
satisfy 

( & n ( k )  +iFd!i)Gn(k) + F C x n m ( k ) G m ( k )  = EnGn(k) 
m f n  

where X , , ( k )  are the interband matrix elements of the operator x. Neglecting these 
interband matrix elements, we can solve this equation exactly. The spectrum of H 
restricted to the nth band is discrete, indexed by j E Z, and given by 

E .=- E,  ( k ’ )  d( k ‘ )  + Frj. 
nl 2 T  lo2*’* 

Note that this is similar to (4) for the real part of the resonances. (In fact, CO is equal 
to the integral with n = O  up to terms O ( h m ) ) .  If we now consider the perturbations 
X,, ,  these terms couple the energy levels to the continuum and as a result the levels 
acquire a finite lifetime as indicated by a non-zero imaginary part. In this picture, 
each band contributes a ladder of resonances. 

In our work, we treat the problem of Stark ladder resonances by analysing the 
tunnelling phenomena as follows (see figure 3). When F = 0, the spectrum of H (  h, 0) 
has the well known band structure. Consider dividing 88 into unit cells whose length 
is the period r of U. We impose Dirichlet boundary conditions between the cells and 
obtain an approximate Hamiltonian Ho( h )  =e:=-= h,( h )  where all h, are identical 
and h, describes the evolution of a particle trapped in a single cell. The bound states 
of h, are e o < e , <  . . . .  

Any e, is an eigenvalue of infinite multiplicity for Ho. We now consider removing 
the boundary conditions: as h -0, H o ( h )  should approach H ( h ,  0). This is indeed the 
case, each infinitely degenerate energy level e, of H o ( h )  splits and gives a band E, of 
H ( h )  [ 3 3 ] .  In the semiclassical regime of small h, the width of the band is controlled 
by the width of the potential barrier 

p , ( e , ) = ; J ~ J u o d s  

which is a distance in the Agmon metric 

( 5 )  

d s 2 =  V(X)  - E ) +  dx2 ( 6 )  

between two classical turning points x,  and x,; u(xi) = e,. Of course, ( 5 )  is familiar 
from the W K B  approximation. The metric (6) however is valid in N dimensions and 
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Forbidden regions for e, 

t-""lt cel l  -1 

I A I  
v I v + F x  A I i \  I 

gives the correct N-dimensional analogue of the W K B  result. (In fact, the entire 
discussion of this paragraph holds in N-dimensions.) 

We now turn on the electric field F. The spectrum of H ( h ,  F )  is dramatically 
different from H ( h , O ) :  it is the entire real line and there are no eigenvalues! This 
suggests the second ingredient in our discussion of resonances: the non-trapping 
property of the potential V ( x )  = v ( x )  + Fx. We can still consider the unit cells U, as 
above but they are no longer identical. The energy levels in U,,, are shifted from 
those in U, by an amount Fr. If we consider a particle with energy e, in U,, the force 
due to the field F will accelerate it to the left. The particle must still tunnel through 
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the barriers, but the distance, across each barrier, as in ( 5 ) ,  is now 

( F s + u ( s ) - c ~ ) +  ds (7) 

where x, E U,,  x,,, E U,,, are consecutive turning points. This distance decreases and 
eventually eo> V ( x )  for all x < ST(eo) min(x1 V ( x )  = e,}, the last classical turning 
point. We expect that for small h the particle behaves classically and, classically, there 
are no trapped orbits for the Hamiltonian H ( x ,  p )  = h 2 p 2 +  v ( x )  + Fx at energy e, in 
the region x < &(e,). We discuss a quantum version of this idea below. 

Roughly speaking, one expects that the sum of the distances (7) across the barriers, 

P A ( U r ,  ut+,) (8 )  

determines the lifetime (equal to the inverse of the imaginary part of the resonace) of 
some of the resonances. This brings us to our second result. To state this, we must 
discuss the notion of resonant and non-resonant cells at energy eo [33,34]. We fix the 
x-coordinates (for convenience) such that 

V ( 0 )  = v ( 0 )  = U, where U, = max,,, ~ ( x ) .  

Then a unit cell for V is an interval U,-= [-T( k + l ) ,  - k ~ ] ,  k = 0, 1 , 2 , .  . . . Associated 
with U, is a single-cell Hamiltonian & ( h ,  F ) =  h 2 p 2 +  e k  on L'(R) where Fk\ = v 
and e, is monotone increasing on R \  uk. The energy e, in theorem 1 is the ground-state 
energy of fi0 up to corrections ~ ( h " ) .  

Definition 2. Let e, be as in theorem 1 and consider an interval Io= [ I ; ,  I : ]  3 e, such 
that dist( U (  fi,), 1;) 5 ch w + 2 + F  , for c > O  and for some E > O .  Then the cell U, is 
non-resonant with respect to e, if 

(9) 

We prove that it is the distance between the cell U, and the nearest resonant cell 
or the exit region fl which lies in the barrier containing ST(e0) and which controls the 
lifetime of some resonant state with energy near e , .  

U ( & )  n I ,  = 4. 

Theorem 2 (Width). For each h sufficiently small, there exists a resonance energy zo 
near e,  and constants c > 0, k > 0 such that for any E > 0 

- ( h Y ( , - r h - ' )  IIm zoI G c e 

where 

where R is the set of unit cells resonant with respect to e , .  

This formula permits one to obtain, under additional assumptions, a version of the 
well known Oppenheimer formula applicable to periodic potentials. The original 
formula describes the dependence of the resonance width on the field F for a hydrogen 
atom in an external electric field. 
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Corollary 1. Suppose that the resonant wells are separated by Euclidean distance 
O ( F - ' )  or that the distance in the Agmon metric from U, to R is O ( ( F h ) - ' )  and there 
are no other resonant wells than U,. Then for each h sufficiently small there is a 
resonance energy zo and constants c, /3 > 0 such that 

Under condition (Fl)  it is probably likely that the second option in corollary 1 
obtains. If resonances exist for F < cha, a > 1, then the first option usually obtains. 

We now give a sketch of the main ideas which enter into the proof of theorem 1. 
The basic idea of the geometric theory of resonances is to introduce an approximate 
Hamiltonian Ho which describes a decoupled system and whose spectrum can be easily 
computed. The decoupling is typically obtained by placing a barrier between the 
regions where a classical particle of energy E will be trapped and where it will have 
unbounded orbits. The approximate Hamiltonian H, is then a direct sum of the 
Hamiltonian HI describing the evolution in the unbounded region and H 2  describing 
the motion in the bounded region. For the Stark ladder Hamiltonian ( l ) ,  this is 
illustrated in figure 4. The eigenvalues of H 2  are approximations to the resonances of H. 

(i) Approximate Hamiltonian. We decouple the region W2 where a particle is 
classically trapped from the exterior W ,  . For energy e o ,  let S,(e,) = min{x) V ( x )  = e,}, 
the last classical turning point. Then the particle is trapped in W2, i.e. where V ( x )  > e, 
for some x. W, is the region where the particle is free, i.e. V ( x )  < eo for all x.  This 
decoupling is done in a smooth overlapping way, W ,  n W2 = s1 is contained in G( e,) 
{ X I  V ( x )  5 e,}, the classically forbidden region for energy e,. We associate a 
Hamiltonian with each region: HI = h 2 p 2 +  v ( x ) +  Fx on W, with a Dirichlet boundary 
condition at the finite endpoint, and H2 = h 2 p 2 +  V 2 ( x )  on R where V2 = V ( x )  for x E W2 
away from R and V ,  + CO as x + -CO. In this way, a( H,) = R and a ( H 2 )  consists of 
non-degenerate eigenvalues. In particular, there are eigenvalues near e, separated 
from all other eigenvalues by an amount O ( / I ' + ~ + ~ ) ,  E => 0. The approximate Hamil- 
tonian is H,(h, F) = H , ( h ,  F ) O H 2 ( h ,  F) on the Hilbert space 5Y0= L2( W,)OL*(R). 
Note that the spectrum of H, ( h ,  F )  consists of eigenvalues coming from H, embedded 
in the continuum states of H,. The basic idea of semiclassical resonance theory is 
that the embedded eigenvalues on H, become resonances of H for h small. 

(ii) Quantum non-trapping. The non-trapping condition on V for a small energy 
interval about e, and in the region WNT= (-CO, S,(e,) + 6) reflects the fact that there 
are no bounded classical trajectories with this energy in this region of phase space. 
This condition can be given in n dimensions but we restrict the definition to n = 1. 
The formulation of this condition requires the introduction of a vector field f: R --f R 
which is increasing along the classical trajectories in the region WNT. 

Definition 3. A potential V is non-trapping for the energy interval Io  3 e ,  and on the 
region WNTC R if there exist E,  > 0 and a vector fieldfE C'(R) such that for all x E WNT 
and E E I , :  

(11) 2 f ' ( x ) ( E  - V ( x ) )  - f ( x )  V ' ( X )  3 E,> 0. 

This formula (1 1) is a generalisation of the usual quantum virial which one obtains 
in the casef(x) = x. Positivity of the virial usually implies the absence of bound states. 
Condition (1 1) will imply the absence of resonances for HI in a neighbourhood of e,. 
For the Stark ladder problem, construction off such that (1 1) is satisfied in the region 
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I 1- w2 

ST( e,)' 

H z ( h , F )  n 
" Y  nn 

v, 0 e, 

Figure 4. The approximate Hamiltonian Ho= H , ( h ,  F ) @  H , ( h ,  F ) .  

WNT( 6)  for some 6 > 0 requires the patching together of two vector fields f, and f2. 
For x = ST(e,) ,  

f i b )  = x 

and for x < ST( lo), we take 

1 a ( s ) d s  
f 2 ( x )  = 2JE - V ( x )  I," J E  - V ( s ) '  

Note that f 2  is obtained by solving the differential inequality ( 1  1 ) .  The undetermined 
function a is chosen so that the smooth vector field 

f ( x )  = g , ( x ) f , ( x ) + g , ( x ) f 2 ( x )  

satisfies (1 1 ) .  Here g ,  and g ,  are a partition of unity: g ,  + g ,  = 1 on W ,  and S,( eo) E 

SUPP g2. 
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( i i i )  Spectra! deformation. According to definition 1 we must associate with H and 
with Ho a family of non-self-adjoint Hamiltonians H (  0)  and Ho( e), respectively, 8 E @. 
This is done in a manner such that the continuous spectrum of HI is moved off the 
real axis but the eigenvalues of H 2  are left intact. We use the vector field f of ( i i )  to 
accomplish this. Consider the mapping 

x + a , ( ~ )  = x + ej-(x) e a .  
For 101 small, this map preserves W, and W, and is invertible. We define unitary 
operators U ,  by 

( u , g ) ( x )  = (1 + e f ’ ( X ) ) ’ / 2 g ( a , ( X ) )  

for jel small. By means of U,, we define and H ( 8 )  by U,H,U;’, U,HU;’, 
respectively, for 6 E R .  These operators can be analytically continued in 6 for IIm el 
small and, by Hunziker’s work [35], there exists a dense set du of vectors having the 
properties discussed above. It  follows from the non-trapping condition that the 
continuous spectrum of H (  e) and H,( e)  is deformed off the real axis in a neighbour- 
hood of the eigenvalue of H ,  considered. The resonances of H ( 6 )  associated with 
this eigenvalue will lie between this curve and the real axis in the lower-half complex 
plane. 

(iv) Geometric perturbation theory: For 8 E @, / e /  small, we study the difference of 
the resolvents Ro(z,  e)  = ( z  - H,(O)) - ’  and R ( z ,  e )  = ( z  - H (  e))-’ in a neighbourhood 
of eo€ c+(H,). We show that for a circle r of radius h 2 + a + P  about e,, R ( z ,  0)  is defined 
and the difference of the resolvents vanishes as h + 0. This will immediately imply 
that H (  e)  has an eigenvalue zo inside r. Since H has no eigenvalues, Im zo # 0 and 
zo is a resonance of H .  The validity of this convergence of resolvents follows from 
the fact that the difference of the two operators H ( 8 )  and H o ( B )  is localised in 
SZ = G( eo) ,  i.e. in the classically forbidden region. As h is made small, all wavefunctions 
localised to this region become small and, consequently, so do  the resolvents. The 
perturbation of &(e) by H ( 8 )  is not ‘small’ in any usual sense, but is localised to a 
region where the particle is prohibited to be. To prove this, we take a pair of smooth 
functions J1 and J2 such that J : + J : =  1 and supp J :  = SZ and J,I( W,\Q) = 1, i.e. they 
are 1 outside of SZ. We use J to denote the map 

J :  %,+ x 
defined by 

J (  U1 0 U?) = J1 U I  + Jzu , .  

Then it is easy to check that JJ* = 1 x .  We can now write the geometric resolvent 
equation on X o :  

R ( Z ,  e ) J  = J R ~ ( Z ,  e)  + R ( Z ,  e ) M R o ( z ,  e ) .  
The interaction term M is given by 

M ( u 1 0  u 2 )  = h 2 [ p ‘ ,  J , lu ,  + h Z [ p 2 ,  JJuZ 

which is ‘supported’ in 0. Then semiclassical techniques are used to estimate MR,( z, e) 
which involves the size of the Green function in the forbidden region. It is typical to 
obtain estimates like 

h211~:p(z - Hl(e))-’ii + o  
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as h + 0. However, more refined estimates are possible and  are required in the Stark 
ladder case. This is because the quantities of interest are exponentially small. A typical 
estimate on the Green function of H,( e )  and H 2  localised to R and for z near e,, takes 
the form: 

IIxr2R,(z)xr~II 1 + c  e-2diillR,(z)ll i = 1 , 2  

where ,yo is a smooth characteristic function for R (,yrl = 1 on R and  vanishes in a 
small neighbourhood outside R )  and  d,) is the distance in the Agmon metric (6) from 
R to R\G( eo) ,  the complement of the forbidden region. These estimates together with 
the geometric resolvent equation are used to prove theorem 1. 

With regard to theorem 2 ,  we note that it is a more refined estimate than what 
appears in theorem 1. The estimate in theorem 1 involves the distance in the Agmon 
metric across the last, exit barrier which is relatively insensitive to F. The result of 
theorem 2 is obtained by iterating the geometric resolvent equation across the non- 
resonant cells. The non-resonant character of these cells is used to obtain a basis of 
functions which are exponentially well localised to the resonant cells only. 
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